

図35.1 K-H-V Differential gear design system

35.1 概要

K-H-V Differential gear design system は、インボリュート歯車の 差動減速(増速)機構設計(歯数差0,1,2の3種類)ソフトウ エアであり、歯形設計、歯のかみ合い、すべり率、強度計算をす ることができます。歯数差が小さい場合や転位係数0歯車で設計 するとインボリュート干渉等が発生しますが、本ソフトウエアで は、かみ合い率が1以上で且つ、干渉が発生しない転位係数の組 み合わせの歯車を計算することができます。なお、トロコイド曲 線を有する差動歯車ソフトウエアは、カタログ[34] Hypo-Trochoid gear design system をご覧ください.

歯車機構は,図 35.2 に示すように腕の固定/入力/出力で構成 されており図 35.3 の「入手力タイプ:図 35.4」で選択することが できます.ここでは,腕(arm)が入力,内歯車が固定で外歯車 を出力の例を示します.なお,歯数差が0の場合は,腕を固定と して歯のかみ合いを計算します.

35.2 諸元設定

図 35.3 の基準ラックを設定し, 図 35.4 の歯車諸元で, 歯数差(本 例では歯数差 1) を入力し, 入手力タイプ(図 35.5)を確定しま す.次に, *m*_n, *z*, *α*_n, β入力後, 転位係数(*x*_n)を入力しますが, 転位係数の与え方は無数に存在しますので図 35.6の補助機能を使 い転位係数を決定することができます.

この図 35.6 の機能では、かみ合い率1以上で且つ、インボリュ ート干渉が発生しない組み合わせを示します(図中の • 印).本 例の場合、55 個を表示しますが、この中から No.26 の転位係数 (*x*n1=-0.6,図中の • 印)を選択すると図 35.4 の諸元が決まりま す.また、転位係数とかみ合い率そして歯車寸法は、図 35.7 の表 からも選択することができます.

図 35.7 寸法一覧

図35.4の諸元を [確定] すると図35.8~35.10のように寸法が決まります.本例の場合,トリミングが発生していますが,かみ合いには影響がないためこのまま計算を進めます.

 ○ 寸法計算結果 □ □ ■ 					
基本寸法 かみ合い寸法 干渉					
項目	記号	単位	外齿車	内歯車	
正面モジュール	mt	mm	1.0353		
正面圧力角	αt	deg	20.6469		
基準円直径	d	mm	50.7285	51.7638	
基礎円直径	db	mm	47.4703	48.4391	
基礎円筒ねじれ角	βb	deg	14.0761		
リード	PZ	mm	594.7709	606.9091	
最大有効直径	dh	mm	51.4669	54.2477	
最小有効直径(TIF)	dt	mm	48.2724	50.2370	
歯切り転位係数	xnc		-0.7462	0.2000	
全歯たけ	h	mm	2.2500	2.2500	
設計歯直角円弧歯厚	sn'	mm	1.0276	1.4252	
設計オーバービン寸法	dm'	mm	51.2996	49.9096	
設計またぎ歯厚	W'	mm	13.5318	20.0987	

図 35.8 基本寸法

 ○ 寸法計算結果 □ □ 				
基本寸法 かみ合い寸法	干渉			
項目	記号	単位	外齿車	内歯車
正面かみ合い圧力角	aw	deg	58.2376	
かみ合いねじれ角	βw	deg	25.4699	
かみ合いビッチ円直径	dw	mm	90.1796	92.0200
有効歯幅	bw	mm	10.0000	
クリアランス(大径)	ckh	mm	0.6474	
クリアランス(小径)	ckt	mm	0.6474	
最大接触直径	dja	mm	51.4679	52.9769
最小接触直径	djf	mm	48.9047	50.2377
正面かみ合い率	εα		1.3356	
重なりかみ合い率	εβ		0.8238	
全かみ合い率	εγ		2.1595	
すべり率(大径側)	σа		-0.0571	0.0540
すべり率(小径側)	σf		-0.1104	0.0994
正面法線方向バックラッシ	jnt	mm	0.1031	
バックラッシ角度	jσ	des	0.2490	0.2440

図 35.9 かみ合い寸法

○ 寸法計算結果					- • •
基本寸法 かみ合い寸法	干渉				
項目	記号	単位	外歯車(出力)	内歯車(固定)	脘(入力)
回転比	Vhi		-0.0204	0.0000	1.0000
逆回転比(=1/Vhi)	Uhi		-49.0000	0.0000	1.0000
トリミング			発生する(注意)		
インボリュート干渉			発生しない(安全)		
トロコイド干渉			発生しない(安全)		
フィレット部干渉				発生しない(安全)	

図 35.10 干渉

35.4 歯形

歯車諸元(図 35.4)の歯形を図 35.11のように作図することが できます. 図 34.12 は、かみ合い部(A)、(B)の拡大図です. ま た,図 35.13 のように距離計測も可能です。歯形レンダリング(図 35.14)は、歯車の組み合わせに応じて歯車が回転します.

図 35.11 かみ合い図

図 35.14 歯形レンダリング

35.5 歯車修整(歯形,歯すじ,バイアス修整)

図 35.15 に歯面修整を与えた例を示します. この歯形を得るた めには図35.16の歯形修整を数値入力で与えることもできますが、 右側の図のようにパターン化した歯形に数値を入力して与えるこ ともできます. 同様に、歯すじ修整も設定することができます. この歯形修整と歯すじ修整の2つを図35.17のように表し、反対 歯面にコピーすれば左右歯面同じ修整歯形となり、それを合成す ると図 35.15 のように表示することができます.

図 35.15 歯面修整(トポグラフ)

また,図 35.17 の画面上部のコンボボックスで「歯形」,「歯す じ」、「歯形・歯すじ」を選択することができ、歯形たけ方向は作 用線または直径で指定することができます.また、歯形修整の倍 率は最大1000倍で設定することができます.そして、歯面修整を 施した歯形は、図 35.18 のように表示することができます.

図 35.18 歯形レンダリング(歯面修整歯形)

35.6 すべり率

すべり率は、図 35.9 の寸法計算結果に示していますが、歯形位 置(作用角)におけるすべり率の変化を図 35.19 で知ることがで き、本例歯車のすべり率は極めて小さいことが分かります.

35.7 強度計算

強度計算は、図 35.20 に示す強度設定画面で摩擦係数、トルク、 回転速度を入力します.本例の場合,摩擦係数を0.08,腕の入力 トルクを 1Nm, 回転速度が 1000min⁻¹とすると [確定] ボタンによ

りピニオンとギヤのトルク,回転速度を計算し表示します.そし て、図 35.21 の強度諸元(材料,係数)での材料選択は、図 35.22 の表から選択することもできますが、oFlim、oFlim、oFlim、を直接入力する こともできます. 図 35.23 に強度結果を示します.

図 35.20 強度計算(トルク設定)

OK ++v/til 図 35.22 材料選択

360 380 505 370 390 510

SNC815

○ 金属強度結果[JGMA40	1-01,402-01	1		- • •	
項目(曲げ)	記号	単位	外歯車	内歯車	
許容曲げ応力	σFlim	MPa	382.500	382.500	
曲げ有効歯幅	b'	mm	10.000	10.000	
歯形係数	YF		3.067	2.065	
荷重分布係数	Yε		0.749		
ねじれ角係数	Yβ		0.875		
寿命係数	KL		1.000	1.000	
寸法係数	KF×		1.000	1.000	
動荷重係数	Kv		1.291		
呼び門周力	Ft	N	974.637		
許容円周力	Ftlim	N	1229.012	1825.211	
歯元曲げ応力	σF	MPa.	303.332	200.165	
曲げ強さ	Sft		1.261	1.911	
項目(面圧)	記号	単位	外齿車	内歯車	
許容ヘルツ応力	σHlim	MPa	1353.500	1353.500	
面圧有効歯幅	bw	mm	10.000		
領域係数	ZH		1.171		
寿命係数	KHL		1.000	1.000	
かみ合い率係数	Zε		0.890		
粗さ係数	ZR		0.842	0.842	
潤滑速度係数	Z¥		0.984	0.984	
硬さ比係数	ZW		1.000	1.000	
荷重分布係数	KHβ		1.000		
動荷重係数	Κv		1.171		
呼び円周力	Fc	N	1732.603		
許容円周力	Fclim	N	525805.454	525805.454	
ヘルツ応力	σH	MPa	77.695	77.695	
ち飯面歯	Sfc		303.477	303.477	

図 35.23 強度結果

35.8 歯形出力

生成した歯形を, CAD データとして出力することができます. 図 35.24の歯形ファイル出力により出力した CAD データ作図例を 図 35.25 および図 35.26 に示します.

35.8 歯数差0の設計例

2 段連結した歯車機構例(K-H-V+0)を図 35.27 に示します.1 段目は1 歯差の外・内歯車です(内歯固定,外歯出力,腕入力). 2 段目(従動側)は0 歯差の外・内歯車です.1 段目の外歯車と2 段目の内歯車を連結すると,入力軸と同軸上で出力することがで きます.図 35.27 では2 段目の0 歯差の外歯車,内歯車,腕のい ずれも固定していません.緑の従動側(差動の外歯車+0 歯差の 内歯車)と赤の外歯車(出力)の回転比は同じです.従って,差 動歯車の減速比を同軸上で取り出すことができます.以下に0 歯 差歯車の設計例を示します.

図 35.27 機構例(1 段目差動, 2 段目 0 歯差)

図 35.28 の歯車諸元設定で歯数差0 を選択します. 次に, モジ ュール, 歯数, 圧力角, ねじれ角を設定し, 図 35.29 の補助機能 で No.23 を選択し, 歯車諸元を確定すると図 35.30 の歯形を得る ことができます. 図 35.30 のかみ合い部 C と反対側 D を拡大した 歯形拡大図を図 35.31 に示します. また, また, 歯形レンダリン グを図 35.32 に示します.

